
Kubernetes Troubleshooting
Workshop

Michael Bright, @mjbright Consulting

http://www.mjbright.net

@mjbrighthttps://linkedin.com/in/mjbright @mjbright

http://www.mjbright.net/
https://linkedin.com/in/mjbright

$ who am i

$ who are you ?
Tell me, are you –

• A complete noob to k8s?

• You know the kubectl basics
• how to deploy Deployments, Services

• You administer or develop Kubernetes at work
• You’re a CKA/CKAD?

Troubleshooting - Groups

I propose to work in groups

• ideally of mixed Kubernetes experience so you learn together

• to limit the resources I need to create

Troubleshooting - Cluster

You will get access to a VM running in AWS EC2.

Each group will a share VM and use KIND « Kubernetes in Docker » to
create a « 2 node » Kubernetes Cluster
https://kind.sigs.k8s.io/
https://github.com/kubernetes-sigs/kind

KIND allows us to create a lightweight cluster, with some limitations

https://kind.sigs.k8s.io/
https://github.com/kubernetes-sigs/kind

Troubleshooting – BYOC ?

If you have access to a remote machine on which you want to run the
workshop then you are welcome.
- The lab can be done on any cluster where you have full admin rights
- Don’t do this on a production cluster, though all scenarii should only

affect the namespace ‘k8scenario’

You can also run this workshop from home after this session.

PLEASE DON’T USE A CLUSTER ON YOUR LAPTOP during this workshop,
you will kill the network connection for everybody

Troubleshooting – BYOC ?

If you have access to a remote machine running OpenShift with full
admin rights I’d love to know what works or not with this tool

Issues or PRs are welcome !

Troubleshooting exercises should work on
- Provided AWS EC2 VMs via KIND or kubeadm
- Managed cloud
- Local (Minikube, Docker Desktop, KIND, microk8s)

As long as sufficient resources, single-node is mostly ok.

Troubleshooting – k8scenario

There is an open source project, ‘k8scenario’ – a tool written in Go
which will automatically install the selected scenario

https://k8scenario.github.io/

PRs, issues (ideas) for the tool are actively encouraged !!
• https://github.com/k8scenario/k8scenario

• or PRs, issues for the documentation
https://github.com/k8scenario/k8scenario.github.io

https://k8scenario.github.io/
https://github.com/k8scenario/k8scenario
https://github.com/k8scenario/k8scenario.github.io

Troubleshooting – k8scenario (priv)

Nevertheless we will be using a ‘closed source’ version of k8scenario
which has some extra features, scenarii which I use in paid trainings

If you only want to use the ‘open source’ version then you’re welcome
to do that

Next version: the tool will be completely open source, some scenarii will
be ‘closed’

Troubleshooting – k8scenario

You will be presented with a basic menu
• select a scenario

Troubleshooting – k8scenario
Each scenario will be installed into the ‘k8scenario’ namespace

The namespace is deleted/recreated at the start of each scenario
So you need those namespace creation/deletion rights

Troubleshooting – k8scenario

Troubleshooting – k8scenario

I recommend to download/install kubectx/kubens to be able to easily change your
current namespace: https://github.com/ahmetb/kubectx/releases

https://github.com/ahmetb/kubectx/releases

Troubleshooting – k8scenario

Troubleshooting – k8scenario

Troubleshooting – k8scenario

Scenarii are typically
• Tasks to perform (like scenario0 – create Pods adhering to some criteria)
• A problem to fix
• In the future quiz functionality will be added

Bored ?? !!
• Then start hacking on https://github.com/k8scenari/k8scenario
• Improve the tool
• Add scenarii
• Improve the documentation

https://github.com/k8scenari/k8scenario

Logistics

Questions?

Feedback ?
Please don’t leave without giving feedback

Google Forms:

http://bit.ly/2020JAN23

PRs/issues

https://github.com/k8scenario/k8scenario/issues

https://github.com/k8scenario/k8scenario.github.io/issues

Questions ?

Feedback
- What worked well ?
- What didn’t ?
- Suggestions

http://bit.ly/2020JAN23
https://github.com/k8scenario/k8scenario/issues
https://github.com/k8scenario/k8scenario.github.io/issues

Let’s have some Kubernetes fun!
And learn a thing or two..

@mjbright https://linkedin.com/in/mjbright

Thank you !

@mjbrighthttps://linkedin.com/in/mjbright @mjbright

Troubleshooting

https://k8scenario.github.io/

We will use the k8scenario tool for installing scenarii to be debugged into our cluster
https://k8scenario.github.io/
https://github.com/k8scenario/k8scenario

Some debug resources:
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service

https://k8scenario.github.io/
https://k8scenario.github.io/
https://github.com/k8scenario/k8scenario
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service

Some useful commands for command-line debugging

Refer to the kubectl cheat sheet for more detail

• https://kubernetes.io/docs/reference/kubectl/cheatsheet/

Kubectl get pods

• Look for pod readiness/status, identify pods with problems
• kubectl get pods -o wide

• kubectl get pods -o yaml

• kubectl get pods --show-labels

• kubectl get pods –A # --all-namespaces

• kubectl get pods -w # --watch (incremental)

• watch –n 10 kubectl get pods -A

Basic Troubleshooting

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

Kubectl describe pod

• Look for events and container status/conditions/restarts

Kubectl get nodes

Kubectl get events [-w]

• Look for events and container status/conditions/restarts

Kubectl logs <pod> [-c <container>] [-p]

Basic Troubleshooting

An excellent resource to introduce you to the process of debugging
applications on Kubernetes is the

"Visual guide on troubleshooting Kubernetes deployments“

on the @learnk8s blog at
https://learnk8s.io/troubleshooting-deployments

Basic Troubleshooting

https://learnk8s.io/troubleshooting-deployments

Describe any failing Pods, and look first at the
Events: section at the end which often describes what’s wrong

$ kubectl describe pod <podname>

Look at labels on resources, e.g. Pods with
$ kubectl get pods --show-labels

Troubleshooting

Create a shell container inside a new or existing Pod to test DNS and
other network issues

Check nodes logs for errors

Check Security Settings
- Security Contexts, Pod Security Policies, Network Policies
- RBAC rules
- SELinux, AppArmor settings if enabled

Troubleshooting

If Pods fail and redeploy too quickly (so log is always empty), you can view
previous Container logs by using the –p option, e.g.

To view previous terminated ruby container logs from pod web-1
kubectl logs -p -c ruby web-1

You can open another console to watch as resources evolve:
$ kubectl get all –watch # show incremental changes
$ watch –n 10 kubectl get all # show current resources, every 10 secs

Or as events are reported:
$ kubectl get events [--watch]

Troubleshooting

Kubectl sub-commands

Basic Commands (Beginner):
create Create a resource from a file or from stdin.
expose Expose a replication controller, service, deployment or pod as a new Kubernetes Service
run Run a particular image on the cluster
set Set specific features on objects

Basic Commands (Intermediate):
explain Documentation of resources
get Display one or many resources
edit Edit a resource on the server
delete Delete resources by filename, stdin, resources & names, or resources & label selector

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

Selections from “kubectl help”

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

Kubectl sub-commands

Deploy Commands:
rollout Manage the rollout of a resource
scale Set replicas for Deployment, ReplicaSet or Replication Controller
autoscale Auto-scale a Deployment, ReplicaSet, or ReplicationController

Cluster Management Commands:
certificate Modify certificate resources.
cluster-info Display cluster info
top Display Resource (CPU/Memory/Storage) usage.
cordon Mark node as unschedulable
uncordon Mark node as schedulable
drain Drain node in preparation for maintenance
taint Update the taints on one or more nodes

Kubectl sub-commands

Troubleshooting and Debugging Commands:
describe Show details of a specific resource or group of resources
logs Print the logs for a container in a pod
attach Attach to a running container
exec Execute a command in a container
port-forward Forward one or more local ports to a pod
proxy Run a proxy to the Kubernetes API server
cp Copy files and directories to and from containers.
auth Inspect authorization

Kubectl sub-commands

Advanced Commands:
diff Diff live version against would-be applied version
apply Apply a configuration to a resource by filename or stdin
patch Update field(s) of a resource using strategic merge patch
replace Replace a resource by filename or stdin
wait Experimental: Wait for a specific condition on one or many resources.
convert Convert config files between different API versions
kustomize Build a kustomization target from a directory or a remote url.

Kubectl sub-commands

Settings Commands:
label Update the labels on a resource
annotate Update the annotations on a resource
completion Output shell completion code for the specified shell (bash or zsh)

Other Commands:
api-resources Print the supported API resources on the server
api-versions Print the supported API versions on the server, in the form of "group/version"
config Modify kubeconfig files
plugin Provides utilities for interacting with plugins.
version Print the client and server version information

Kubectl sub-commands

There’s more: see “kubectl options” to see another 30 options which apply to all
sub-commands

e.g. -v <verbosity>

kubectl get pods -v 10

> kubectl get pods -v 10 |& grep "GET http"
I0104 22:37:07.368597 21381 round_trippers.go:443] GET
https://127.0.0.1:11997/api/v1/namespaces/default/pods?limit=500 200 OK in 10 milliseconds

We can attach to the stdout of a running container to see it’s output

Basic Troubleshooting – kubectl attach

kubectl help attach
Attach to a process that is already running inside an existing container.

Examples:
Get output from running pod 123456-7890, using the first container by default
kubectl attach 123456-7890

Get output from ruby-container from pod 123456-7890
kubectl attach 123456-7890 -c ruby-container

Get output from the first pod of a ReplicaSet named nginx
kubectl attach rs/nginx

The usual -it (--interactive and --tty) options are also available

We can exec into a running container (creates a new process)

Basic Troubleshooting – kubectl exec

kubectl help exec
Execute a command in an existing container.

Examples:
Get output from running 'date' command from pod mypod, using the first container by default
kubectl exec mypod date

Get output from running 'date' command in ruby-container from pod mypod
kubectl exec mypod -c ruby-container date

Switch to raw terminal mode, sends stdin to 'bash' in ruby-container from pod mypod
and sends stdout/stderr from 'bash' back to the client
kubectl exec mypod -c ruby-container -i -t -- bash -il

The usual -it (--interactive and --tty) options are also available

kubectl exec can be useful for

- Checking container functionality

- Checking connectivity from a Pod to
- other Pods

- Services

- External sources

- Checking cluster DNS resolution

Basic Troubleshooting – kubectl exec

Break

